Ciencia con espiral de limón

Science with a (lemon) twist
BLOG EN RECESO TEMPORAL
Mostrando entradas con la etiqueta tamaño_del_cerebro. Mostrar todas las entradas
Mostrando entradas con la etiqueta tamaño_del_cerebro. Mostrar todas las entradas

lunes, 5 de diciembre de 2011

Las vísceras y el costo de un cerebro grande


El cerebro es un órgano que consume bastante energía, por lo que aquellas especies o grupos animales que han evolucionado un cerebro grande han tenido que pagar un precio energético. Dado que los humanos tenemos cerebros tres veces más grandes que nuestros parientes genéticos más cercanos (los chimpancés) mucho se ha discutido acerca de la forma en la que los humanos han costeado el tener un cerebro grande; principalmente en el sentido de que no es posible incrementar los costos energéticos de un órgano sin que se disminuyan los de otro órgano.
Según la hipótesis del tejido costoso las especies del género Homo, a lo largo de su evolución, comprometieron el tamaño de su aparato digestivo para costear el aumento en el tamaño de sus cerebros. Es decir, si mediante otros procesos las especies de dicho grupo lograron reducir los costos energéticos de la digestión esto pudo permitirles evolucionar un cerebro grande. Como ya hemos comentado en este blog, tener una dieta más rica en carne y alimentos cocinados pudo haber sido el cambio que permitió a los homínidos reducir los costos digestivos.
Sin embargo, a pesar de ser una hipótesis bastante aceptada en el medio antropológico, hasta hace poco no se había puesto a prueba dicha hipótesis. Para remediar la existencia de dicho hueco, Ana Navarrete llevó a cabo su tesis doctoral alrededor de dicho tema. Para ello, analizó la relación entre el tamaño de varias vísceras (corazón, pulmones, estómago, intestinos, riñones e hígado) con el del cerebro en una muestra de 100 especies de mamíferos, incluyendo 23 especies de primates.
En su análisis, ella y otros dos colaboradores, eliminaron los posibles efectos del tamaño de cuerpo; pero dado que el tamaño del cuerpo puede verse afectado por la cantidad de tejido adiposo utilizaron la masa corporal sin grasa para su análisis.
El cerebro humano. Imagen tomada de Wikimedia Commons.
 
Contrario a lo esperado, Ana y su equipo no encontraron una correlación negativa entre el tamaño del cerebro y el del tracto digestivo, y tampoco entre el cerebro y ningún otro órgano. Sin embargo, un resultado merece mención: si hubo una correlación negativa entre el tamaño del cerebro y el tamaño de las reservas de grasa en los mamíferos considerados, con excepción de los primates.
Esto es interesante porque además de las reservas de tejido adiposo, se ha propuesto que los cerebros grandes pueden servir como “amortiguadores” en tiempos de estrés alimenticio. De alguna manera, los cerebros grandes podrían ser una estrategia complementaria a las reservas de tejido adiposo para enfrentar los tiempos de vacas flacas.
Por otro lado, y como el lector suspicaz ya habrá pensado, hay otro camino obvio para costear los cerebros grandes: comer más, y eso parece ser lo que ocurrió en la historia evolutiva humana. Los requerimientos energéticos parecen haber sido satisfechos mediante un incremento en el consumo de carne y alimentos cocinados.
Pero también, es posible que otras conductas hayan hecho que la energía obtenida en la forma de chuletas de bisonte haya sido mejor aprovechada. Los autores apoyan la idea de que el compartir alimentos y cooperar en la crianza pudieron haber contribuido a disminuir el tiempo y la energía empleada en dichas actividades, permitiendo entonces que las condiciones para un incremento del tamaño cerebral fueran más propicias.
Lo anterior, aunado al bipedalismo, que se ha propuesto como una forma energéticamente más eficiente de locomoción comparado con la locomoción cuadrúpeda y el andar meceándose por las ramas, pudo también haber contribuido a crear las condiciones propicias para la evolución de los grandes cerebros presentes en el genero Homo.
Entonces, parece que no fue una reducción en el tamaño del tracto digestivo lo que contribuyó a un incremento en el tamaño cerebral, sino las mejoras en la dieta, la cooperación en la crianza y los cambios en la locomoción.
Artículo de referencia:

ResearchBlogging.org
Navarrete, A., van Schaik, C., & Isler, K. (2011). Energetics and the evolution of human brain size Nature, 480 (7375), 91-93 DOI: 10.1038/nature10629

jueves, 15 de septiembre de 2011

Homo erectus y el poder de un T-bone bien cocinado


Ser cocinero podría ser una de las profesiones más antiguas. El uso controlado del fuego para cocinar alimentos pudo haber sido un cambio conductual importante en la historia humana que propiciara la evolución de otros caracteres, como por ejemplo, el incremento en el tamaño del cerebro.
Aunque ya se sospechaba que varias especies extintas del género Homo eran afectas a la cocinada, no era claro exactamente cuándo era que los chefs ancestrales aparecieron. Según nueva evidencia publicada recientemente en los Proceedings of the National Academy of Sciences, por un grupo de la Universidad de Harvard liderado por Chris Organ, los primeros cocineros pudieron haber aparecido tantito antes de que los Homo erectus partieran plaza.
Para llegar a dicha conclusión, Chris y su equipo aplicaron técnicas filogenéticas Bayesianas para analizar y comparar el tiempo dedicado a la alimentación en humanos y otros primates. También, analizaron los cambios en el tamaño molar dentro del genero Homo.
Según sus cálculos, el tiempo dedicado a la alimentación se incrementa conforme se incrementa el tamaño del cuerpo en primates no humanos. Sin embargo, los humanos invierten mucho menos tiempo que otros primates en alimentarse: solo el 4.7% del día comparado con el 48% que deberían invertir considerando el tamaño del cuerpo.
Después, combinaron la información de tiempo dedicado a la alimentación con el tamaño molar, para lo que tomaron en cuenta el tamaño de las muelas de 14 miembros de la tribu hominini (es decir, miembros de los géneros Homo y Pan). Y aunque el tamaño molar y la masa corporal se relacionan en varias especies de primates –incluso en Homo habilis y Homo rudolfensis- las especies Homo erectus, Homo neanderthalensis y Homo sapiens tienen molares substancialmente mas pequeños que el resto de los primates.
Por otro lado, Chris y su equipo modelaron el tiempo dedicado a la alimentación en Homo erectus y Homo neanderthalensis tomando en cuenta la cercanía filogenética con Homo sapiens y la información disponible respecto al tiempo dedicado a la alimentación en esta especie. De acuerdo con estos cálculos, Homo erectus y Homo neanderthalensis habrían invertido 6.1 % y 7% de su tiempo diario a la alimentación, lo cual es bastante cercano a lo que invierte un Homo sapiens común.
Según los autores, es poco probable que los cambios en el tiempo dedicado a la alimentación puedan ser explicados por un cambio a una dieta carnívora, en parte porque ningún grupo humano tropical contemporáneo subsiste con una dieta exclusivamente carnívora y también porque existe evidencia de procesamiento de carne desde hace 2.6 millones de años y carnivoría asistida con herramientas desde hace 3.39 millones de años. Es decir, alrededor de la época en que los Australopithecus deambulaban por el mundo.
En resumen, sus datos sugieren que el tiempo dedicado a la alimentación y el tamaño molar en el género Homo son excepcionales comparados con otros primates y, según sus cálculos, este cambio ocurrió en algún momento durante el Pleistoceno. Es decir, después de que el linaje de los chimpancés y los humanos se separara y más o menos cuando Homo erectus entraba en escena.
Lo importante de los cálculos llevados a cabo por el equipo de la Universidad de Harvard es que la comida cocinada, permitió a nuestros ancestros consumir un alimento altamente calórico que podía además ser digerido con mayor facilidad. Esto habría permitido que el homínido en cuestión tuviera tiempo para otras actividades –como socializar- y suficientes calorías para mantener un cerebro grande.
Parece ser entonces que, en cuanto a la evolución humana se refiere, no debemos nunca subestimar el poder de un T-bone bien cocinado.
Elementos de una buena carne asada. Fotografía de Guillermina.
Artículo de referencia:

ResearchBlogging.org
Organ, C., Nunn, C., Machanda, Z., & Wrangham, R. (2011). Phylogenetic rate shifts in feeding time during the evolution of Homo Proceedings of the National Academy of Sciences, 108 (35), 14555-14559 DOI: 10.1073/pnas.1107806108

miércoles, 15 de diciembre de 2010

Receta sencilla para leer la mano (y las intimidades) de homínidos extintos y existentes

Cómo es que los homínidos ancestrales vivían es algo que nos daría valiosísima información respecto a cómo es que somos lo que somos y, afortunadamente, constituye un tema de interés para un buen puñado de científicos quienes en este momento se hacen preguntas como ¿cómo eran la vida social y las relaciones de nuestros ancestros? ¿eran monógamos o polígamos?
Los huesos y restos que dejaron atrás nos dicen mucho menos de lo que quisiéramos saber respecto a su vida social. Y mientras más información –y más especies de homínidos- van apareciendo en el panorama más dudas surgen respecto a su vida social. Debido a que solo contamos con esa información, se vuelve necesario aprovecharla al máximo. Por suerte los fósiles –aún cuando fragmentados y limitados- pueden darnos información muy interesante. De su tamaño, por ejemplo, es posible deducir varias cosas.
El dimorfismo sexual, es decir, la diferencia de tamaño observada entre machos y hembras de una especie es una característica que ha sido utilizada para predecir la conducta social. Mientras más grandes sean los machos con respecto a las hembras, mayor es la competencia existente entre los machos por el acceso a las hembras. Otras características también pueden estar asociadas con dicha competencia, como es el tamaño de los caninos.
Utilizar el grado de dimorfismo sexual para inferir la vida social de los homínidos extintos se torna más difícil debido –entre otras cosas- a otras características del grupo sobre las que actualmente existe debate, como por ejemplo, el tamaño de los caninos. Y es en casos como este cuando, para darle la vuelta a ciertos problemas metodológicos, surgen ideas como la de utilizar otros indicadores de la vida social de las especies, como son aquellos relacionados con la selección sexual.
Tal es la propuesta de un estudio realizado por Emma Nelson, Campbell Rolian, Lisa Cashmore y Susanne Shultz y cuyos resultados fueron publicados hace poquito en la revista Proceedings of the Royal Society. El grupo multinacional y multidisciplinario consideró para su estudio la proporción entre el segundo (dedo índice) y el cuarto dígito (dedo anular), es decir, el resultado de la división de la longitud del dedo índice entre la longitud del anular. Dicha proporción a la que comúnmente se refiere como 2D:4D, es considerada como un marcador de hormonas sexuales prenatales.
Se ha visto que la proporción 2D:4D en humanos es sexualmente dimórfica, siendo generalmente más baja en hombres que en mujeres. Adicionalmente, se ha visto que una baja proporción 2D:4D se asocia con conductas relacionadas con la dominancia en ambos sexos. Incluso, a nivel poblacional se le ha relacionado con sistemas poligínicos. Esta relación también se mantiene en primates no humanos y se ha visto que la proporción es más alta en especies monogámicas que en aquellas más promiscuas y caracterizadas por competencia entre machos.
Mano con el índice más corto que el anular (una proporción baja entre el segundo y el cuarto dedos) lo que indica una alta exposición a testosterona en el útero. Imagen tomada de Wikipedia

Por tanto, para indagar sobre el sistema social de los homínidos extintos bastaría con que tuviéramos información sobre sus manos, y dado que solo contamos con los huesitos de las manos de varios de ellos Emma y su equipo utilizaron el tamaño de las falanges. Para su estudio, entonces, no utilizaron la proporción 2D:4D si no la proporción 2FP:4FP, donde FP se refiere a la falange proximal.
Emma y colegas utilizaron restos fósiles alojados en colecciones de museos, así como información reportada en otros artículos sobre homínidos existentes, es decir, Homo sapiens, y extintos como Pierolapithecus catalaunicus, Hispanopithecus laietanus (un simio ancestral), Ardipithecus ramidus (la recientemente descubierta “Ardi”), Australopithecus afarensis (como la famosa Lucy), y Homo neanderthalensis (nuestro pariente más cercano en la muestra).
Para sus comparaciones utilizaron medidas de simios contemporáneos monógamos como los gibones (Hylobates) y simios más promiscuos como chimpancés, orangutanes y gorilas (Pan, Pongo y Gorilla, respectivamente). De tal suerte que contando con las medidas de las falanges de los homínidos extintos y el hombre, así como con las medidas de las falanges y la información respecto a la vida social de los simios contemporáneos y el hombre, fue posible inferir las costumbres de los homínidos ya extintos. Es importante notar que en caso particular del Homo sapiens el sistema social fue considerado como intermedio entre la monogamia y la poliginia.
Los resultados señalan que Ardi, el simio ancestral, los neandertales, así como los humanos serían todos devotos de la poliginia, pero un sistema monógamo habría caracterizado a Austrolopithecus, es decir, a Lucy y sus parientes. Sin embargo, la variabilidad en las proporciones digitales de nuestros cercanos parientes Homo neanderthalensis sugiere que estos homínidos del pleistoceno, al igual que los humanos contemporáneos, podrían haber exhibido cierta flexibilidad en su sistema social y sus costumbres de apareamiento, es decir, podrían haberse encontrado indecisos entre la monogamia y la promiscuidad.
Estos resultados, mas allá de sugerirnos como podrían haber sido los encabezados de la versión pleistocénica de la revista ¡Hola!, también nos sugieren que la transición de un sistema poligínico a uno (potencial o preponderantemente) monogámico pudo haber ocurrido ya tarde en la historia evolutiva humana.
La propuesta anterior, ya puesta en la mesa anteriormente por otros autores, iría de acuerdo con las teorías que sugieren que un sistema monogámico habría evolucionado de la mano con el incremento en el tamaño del cerebro en la evolución del género Homo. Y no porque ser monógamo sea (necesariamente) sinónimo de ser avispado en el mundo animal, si no porque los cerebros grandes son costosos y la monogamia puede ser el sistema social ideal para costear su precio. Veamos porqué.
El enorme cerebro de los bebés humanos –comparado con el de otras especies- requiere una cantidad considerable de cuidado parental durante un prolongado periodo de tiempo y el hecho de que, a pesar de eso, la especie humana sea altamente fecunda dentro de los homínidos es de llamar la atención. Las especies con cerebros grandes en relación con el tamaño del cuerpo son generalmente poco fecundas. Sin embargo la excepción a esta regla son aquellas especies en las que existe un dedicado cuidado parental.
Cría de Homo sapiens. Fotografía de Bùi Linh Ngân tomada de Wikimedia Commons.

En el caso humano, en particular, la alta fecundidad puede en algunos casos mantenerse solo si se cuenta con la ayuda de ambos padres; sobre todo si pensamos en humanos en situaciones tan demandantes como las de un cazador-recolector y/o un nómada.
El hecho de que, considerando la proporción 2FP:4FP, los humanos se encuentren en un punto intermedio entre la monogamia y la poliginia también sugiere que el emparejamiento en esta especie difiere de otros primates monógamos. Podemos decir que, biológicamente hablando, el sistema de los humanos es más bien uno en el que tanto las hembras como los machos suelen tener varias parejas, aunque exhiben una tendencia a la monogamia cuando llega la hora de criar a los retoños.
A juzgar por la proporción de los huesitos de la mano, los sistemas sociales de los neandertales y los humanos modernos serían semejantes y caracterizados por un cierto grado de competencia en la adquisición de parejas. Esto va de acuerdo con la idea de que ambos miembros del género Homo mostraban semejanzas en su desarrollo.
Como vemos, las manos –y en particular los huesos de los dedos- pueden darnos información sobre la vida social de las especies, incluidos los homínidos extintos. Mientras mas restos fósiles aparezcan mayores podrán ser los alcances de estudios como el de Emma y sus colaboradores.
Todavía hay muchos enigmas que resolver como ¿cuándo el cerebro de los homínidos llego a ser tan grande que la crianza compartida fue un requisito para la sobrevivencia de las crías? ¿qué otros factores en la historia de nuestros ancestros intervinieron para que hubiera una transición de la poliginia a un sistema más cercano a la monogamia? ¿de qué manera –si es el caso- están ligados la evolución del tamaño del cerebro, el cuidado parental y el dimorfismo sexual? Seguro que en este momento hay alguno que otro paleobiólogo pensando de qué herramientas echar mano para dar respuesta a estas y otras electrizantes incógnitas.
Artículo de referencia:


ResearchBlogging.org
Nelson, E., Rolian, C., Cashmore, L., & Shultz, S. (2010). Digit ratios predict polygyny in early apes, Ardipithecus, Neanderthals and early modern humans but not in Australopithecus Proceedings of the Royal Society B: Biological Sciences DOI: 10.1098/rspb.2010.1740
-------------------------------------------------------------------------------
Se recomienda leer el artículo de Dan Jones “A window on the past” publicado en 25 de abril del 2009 en la revista New Scientist.

jueves, 25 de noviembre de 2010

Cría cuervos y se volverán genios

Durante los últimos años los cuervos le han dado otro significado al concepto de “cabeza de chorlito” ya que nos han demostrado que se puede tener cerebro de ave y aún así sorprendernos con sus habilidades.
Los córvidos, familia a la que pertenecen los cascanueces, las urracas, los arrendajos y los cuervos entre otros, ya son famosos por sus innovadoras conductas, su cerebros grandes, su uso de herramientas y en general por su inteligencia (ver otros ejemplos aquí y aquí). Los cuervos de Nueva Caledonia (Corvus moneduloides), en particular, han demostrado sorprendentes habilidades en el uso de herramientas. Dichas habilidades resultan extraordinarias no sólo dentro del mundo animal (no humano), si no incluso comparados con los primates, los reyes del uso de herramientas. 
Cuervo. Imagen tomada de aquí.
Por ejemplo, en algunos experimentos los cuervos no solo utilizan pedazos de alambre para extraer jugosos gusanos escondidos en un tubo si no que doblan un extremo de dicho alambre para poder extraerlos más fácilmente. Algunos autores han incluso sugerido que su habilidad para usar herramientas demuestra que estas obscuras aves son capaces de razonamiento inductivo. Es decir, pueden establecer relaciones causales entre eventos y de esta manera ser capaces de resolver problemas que requieran, por ejemplo, la ejecución de acciones en secuencia. También, en el mundo ornitológico se habla mucho acerca de sus considerablemente grandes cerebros. 
Cuervo usando herramientas. Imagen de Jonathon Rosen.

En otras especies, como primates y ungulados, se ha visto que el tamaño del cerebro se relaciona con el tamaño de grupo y con la presencia de habilidades cognitivas complejas, como la habilidad de clasificar de forma jerárquica. De acuerdo con la hipótesis del cerebro social las presiones a las que se enfrentan los animales sociales podrían haber propiciado la evolución de mentes flexibles e inteligentes.
Sin embargo, en el mundo de las aves no se ha encontrado una relación clara entre el tamaño del cerebro y la socialidad. Otros autores como Richard W Byrne y Andrew Whiten han sugerido que la calidad y el tipo de relaciones pueden predecir la “inteligencia” de mejor manera que el tamaño de grupo.
A pesar de todos los detalles respecto a sus habilidades, hasta hace poco no se conocía con detalle la estructura social de los cuervos de Nueva Caledonia. Para remediar esto Jenny Holzhaider de la Universidad de Auckland en Nueva Zelanda se dio a la tarea de estudiar durante 4 años -como parte de su tesis de doctorado- la vida social de un grupo de cuervos en la isla de Maré en Nueva Caledonia. Algunos de los resultados de su tesis fueron publicados hace unas semanas en la versión en línea de la revista Animal Behaviour.
Para su tesis, Jenny y otros colaboradores colocaron mesas de alimentación con agujeros verticales dentro de los que había pedazos de carne que solo podían ser extraídos con alguna herramienta, por ejemplo, una varita de largo y ancho apropiados. Cerca de dichas mesas colocaron árboles de Pandanus para que los cuervos pudieran obtener de ahí sus “herramientas”.
Dado que identificaron individualmente a los cuervos con banditas de colores en sus patas Jenny y su equipo pudieron saber quiénes se asociaban con quiénes en los sitios de alimentación. También, colocaron radiotransmisores en algunos de ellos para conocer su posición fuera de las mesas de alimentación.

Sorprendentemente, sus resultados demostraron que los cuervos de Nueva Caledonia no son especies altamente sociables. De hecho, dichos cuervos parecen preferir las unidades familiares pequeñas: la pareja y las crías. Además, las crías permanecen cercanamente asociadas a sus padres durante el primer año de vida e incluso durante más tiempo, período durante el cual los padres pueden incluso proveer de alimento a las negras y apegadas crías.
Estos cuervos parecen ser aves muy relajadas: no parecen defender sus territorios y los adultos toleran a los juveniles pertenecientes a otras familias. Durante el estudio de Jenny los observadores rara vez presenciaron interacciones agresivas. Esto podría deberse a la existencia de jerarquías sociales con las que de alguna manera los conflictos pueden ser amortiguados.
El hecho de que el cuidado parental sea tan largo distingue a los cuervos de Nueva Caledonia de otras especies de córvidos. La ventaja de contar con la prolongada ayuda y protección de los padres es que permite a las crías aprender técnicas de extracción de alimento, particularmente en zonas donde la comida no es fácilmente accesible.
Acorde con la hipótesis de la inteligencia técnica, propuesta por Richard W Byrne y Andrew Whiten, los retos que podría imponer la extracción de alimento explicarían las desarrolladas habilidades cognitivas y el grado de encefalización en esta especie de cuervos tropicales.
Interesantemente, dicha hipótesis fue originalmente propuesta para explicar la diferencia entre el tamaño de cerebro entre homínidos y otros primates. Los autores de la misma la sugirieron en su momento como un complemento a la hipótesis del cerebro social, no como un sustituto. En consecuencia, los autores propusieron que la competencia social y la tecnológica (uso de herramientas) actuaron de manera conjunta para favorecer la evolución de un incremento en el tamaño del cerebro y, por tanto, del grado de inteligencia.
De acuerdo con Jenny y su equipo, dos aspectos de la vida social de los cuervos de Nueva Caledonia son consistentes con la hipótesis mencionada en los párrafos anteriores. Primero, las relaciones sociales de calidad están restringidas a la familia inmediata. Segundo, los padres facilitan la adquisición de habilidades en sus crías mediante la interacción continua durante un periodo prolongado de tiempo.
Esto último promueve la transmisión vertical (de padres a hijos, o de una generación a otra) de las habilidades en el uso de herramientas. La transmisión vertical es considerada como crucial para la transmisión fidedigna de las innovaciones tecnológicas.
Por otro lado, una fuerte tolerancia entre individuos también se ha planteado como un factor clave en la evolución de la tecnología en homínidos. La cercanía entre individuos y la tolerancia permiten que las nuevas generaciones puedan observar con detalle las conductas de otros, particularmente cuando se trata de observar el uso y/o elaboración de herramientas. Como se mencionó con anterioridad, la tolerancia social fue también un detalle que se observó en los cuervos del estudio de Jenny.
En otro tenor de ideas, el hecho de que los cuervos de Nueva Caledonia establezcan relaciones sociales cercanas y a largo plazo es consistente con la idea de que, desde el punto de vista cognitivo, la calidad de las relaciones en las aves (o por lo menos en algunas) podría ser un factor más importante que la cantidad de relaciones en la evolución de la inteligencia aviar.
En resumen, en los cuervos de Nueva Caledonia las redes sociales pequeñas, el cuidado parental prolongado y la existencia de relaciones sociales de calidad son factores sociales que pudieran estar asociados con las impresionantes habilidades en el uso de herramientas y con la evolución de sus habilidades cognitivas. En el mundo de los cuervos de Nueva Caledonia, si crías cuervos se vuelven genios.



"Cuervo sofisticado: ¿puedo usar tu lijadora orbital amigo?"
Sydney Morning Herald 20-1-1996.

Artículo de referencia:

ResearchBlogging.org
Holzhaider, J., Sibley, M., Taylor, A., Singh, P., Gray, R., & Hunt, G. (2010). The social structure of New Caledonian crows Animal Behaviour DOI: 10.1016/j.anbehav.2010.09.015

miércoles, 15 de septiembre de 2010

Primates de sombreros anchos y habilidades cognitivas amplias

 En los últimos años ha crecido el número de estudios que relacionan el tamaño del cerebro en vertebrados con características ecológicas y conductuales del grupo o las especies en cuestión. Por ejemplo, en primates el tamaño del cerebro se relaciona positivamente con el tamaño de los grupos sociales, la formación de coaliciones, las tasas de engaño y el aprendizaje social. En aves se ha encontrado una relación similar con algunas características conductuales. 
 Monos fumando pipa. Ilustración de Coryn Boel tomada de Wikimedia Commons.
Ha sido común que este tipo de estudios asuman que existe una relación causal entre el tamaño del cerebro y las funciones cognitivas. Sin embargo, la evidencia que respalde dicha relación es escasa, por lo que para que dichos estudios tengan bases firmes es indispensable validar la afirmación de que los cerebros grandes están relacionados con la inteligencia. En ciencia no basta con sospecharlo: hay que comprobarlo.
Susanne Shultz y Robin Dunbar de la Universidad de Oxford se dieron a la tarea de proporcionar dicha evidencia. Dichos autores han estado interesados en la evolución cognitiva durante ya algunos años y ellos mismos han llevado a cabo estudios que relacionan, por ejemplo, el tamaño del cerebro con el tamaño de grupo en varios grupos de vertebrados. Por lo que era natural que ellos mismos indagaran sobre los fundamentos de estos temas.
Pero exactamente ¿qué es necesario medirle a los cerebros? La pregunta no es trivial porque existe otro debate respecto a si las habilidades cognitivas son el resultado de la interacción de una serie de redes neuronales operantes a lo largo y ancho del cerebro (la llamada cognición de dominio general), o si responden a la actividad principal de algunas regiones del cerebro en particular (cognición de dominio específico).
En el primer caso, una medida del tamaño general del cerebro podría ser suficiente. En el segundo caso sería preciso medir el tamaño de las estructuras o partes del cerebro a las que se les haya vinculado específicamente con capacidades cognitivas avanzadas. Dichas estructuras son el hipocampo y la neocorteza cerebral
Al hipocampo se le ha relacionado con el aprendizaje y la formación de memorias y se ha reconocido que juega un papel importante en la codificación y recuperación de la memoria espacial. La neocorteza cerebral, una de las regiones cerebrales más jóvenes evolutivamente hablando, se le ha relacionado también con el aprendizaje y la resolución de problemas. En particular, al lóbulo frontal se le ha atribuido una participación importante en las funciones ejecutivas del cerebro. Se ha sugerido que dichas funciones apuntalan las habilidades socio-cognitivas avanzadas –como la teoría de la mente-, algunas de las cuales pueden ser exclusivas de los seres humanos. En cualquier caso, las neocortezas grandes (en relación con otras estructuras cerebrales) son un atributo característico de los primates.
Shultz y Dunbar, entonces, se dieron a la tarea de hacer una búsqueda bibliográfica de los estudios experimentales con primates donde se pusieran a prueba las habilidades cognitivas que han sido relacionadas con el tamaño del cerebro y su arquitectura dentro y entre especies. Los resultados de su estudio se publicaron recientemente en la revista Journal of Comparative Psychology.
En su estudio Susanne y Robin analizaron la información correspondiente a 17 géneros y 46 especies de primates. En su modelo incluyeron los resultados de estudios experimentales con primates respecto a su desempeño en tareas que pueden ser agrupadas en cuatro grupos principales: aquellas relacionadas con su capacidad de discriminar información, habilidades espaciales, pruebas relacionadas con la memoria, así como con la resolución de problemas. Las medidas cerebrales que consideraron fueron: volumen de de la neocorteza, volumen cerebral total, volumen del cerebro subcortical, neocorteza visual, medula, hipocampo y cerebelo.
Los autores, además, tuvieron cuidado de considerar en sus modelos la cercanía filogenética de las especies consideradas. Esto es importante porque las especies cercanamente relacionadas pueden compartir ciertas características simplemente porque comparten un ancestro común.
Según sus resultados el volumen del hipocampo y el de la neocorteza estuvieron positivamente asociados con el desempeño cognitivo. Es decir, las especies que se desempeñaron mejor fueron aquellas que tuvieron un hipocampo y una neocorteza más grandes. Por lo tanto, estos resultados dan mayor peso a las afirmaciones de que el volumen del cerebro –y el de algunos de sus componentes- se relaciona positivamente con la inteligencia general.
En otro tenor, sus resultados también sugieren que –en efecto- una de las presiones selectivas que han favorecido el crecimiento del cerebro podría ser el desempeño conductual relacionado con las funciones ejecutivas. Y, aunque parezca obvio, también indica que las diferencias en el tamaño del cerebro entre especies sí implica diferencias en sus correspondientes habilidades cognitivas.
Es importante resaltar que aunque el volumen de varios componente cerebrales se relacionó positivamente con el desempeño en general, el tamaño del hipocampo fue el que presentó la relación más fuerte. A pesar de esto, Susanne y Robin, enfatizaron sin embargo que ésta última relación no puede explicar las grandes diferencias volumétricas observadas entre diferentes especies.
Ellos arguyen que debe haber algún aspecto crucial –no completamente dilucidado- relacionado con el tipo de cognición considerado y que esto probablemente involucra una red neuronal de unidades de procesamiento distribuidas a lo largo y ancho de la neocorteza. Esta idea sin duda ha rondado el campo de la investigación cognitiva, pero es indispensable contar con pruebas definitivas al respecto. En particular, es importante tener claro cuáles son los mecanismos específicos relacionados con la interacción entre la neocorteza, el hipocampo y probablemente otras áreas del cerebro.
Por otro lado, el hecho de que el hipocampo y la neocorteza aparezcan con fuerza en sus modelos como predictores del desempeño cognitivo apoya la idea de una cognición integrada. Relacionado con este tema lo que seguiría sería llevar a cabo estudios que evalúen el desempeño en tareas específicas y lo relacionen con zonas específicas del cerebro. Aunque prevalezca una cognición integrada, ello no implica que ciertas regiones no puedan estar a cargo de ciertas tareas en particular. Para ello, Susanne y Robin sugieren el uso de imágenes cerebrales, lo que permitiría llevar a cabo análisis más detallados y en tiempo real.
Susanne y Robin, nos proporcionaron más información para entender porqué ciertas especies tienen cerebros más grandes que otras y cuáles pudieron haber sido las presiones selectivas que al respecto han sufrido ciertos linajes evolutivos. En otras palabras, si usamos sombreros anchos dentro del mundo de los primates, el estudio de Susanne y Robin nos ayuda a acercarnos al porqué.
Artículo de referencia: 

ResearchBlogging.org
Shultz, S., & Dunbar, R. (2010). Species differences in executive function correlate with hippocampus volume and neocortex ratio across nonhuman primates. Journal of Comparative Psychology, 124 (3), 252-260 DOI: 10.1037/a0018894

martes, 15 de junio de 2010

Las langostas del desierto que tienen vida social tienen también cerebros más grandes

Las langostas del desierto (Schistocerca gregaria) son insectos cuya característica más notoria es probablemente su capacidad de formar descomunales y móviles enjambres. Una de las plagas bíblicas fue un enorme enjambre de langostas que cubrió completamente el suelo de Egipto y entró en todas las casas de los egipcios de una forma nunca antes vista. La imagen de un enjambre de langostas en movimiento es tan inquietante que ha sido un recurso ampliamente utilizado en películas, principalmente de terror.

Langostas. Ilustración de la Crónica de Nuremberg de Hartmann Schedel. Tomada de Wikimedia Commons.


Los temores alrededor de los enjambres de langostas son bien justificados. A lo largo de la historia han existido varios brotes que han devastado grandes extensiones de toda su vegetación ocasionando grandes pérdidas a agriculturas locales y ecosistemas. El enjambre de langostas que azotó al Norte de África en el 2004 llegó a medir 230 km de largo y 150 metros de ancho. Compuesto por unos 69 billones de langostas, el enjambre se movió a lo largo y ancho de varios países ocasionando pérdidas económicas enormes.

Las pérdidas económicas relacionadas con estos enjambres son tan altas que actualmente la FAO tiene en marcha un programa en línea de monitoreo de langostas (Locust watch) donde se informa de las condiciones prevalecientes respecto a la presencia de pequeños enjambres de estos bichos y las condiciones ambientales que pudieran propiciar un nuevo y devastador brote.


Pero a las langostas no siempre se les encuentra en grandes enjambres. Cuando no están devastando campos de cultivo se les puede encontrar en una fase solitaria críptica que se encuentra más activa al amanecer y durante el atardecer, selecciona con cuidado la vegetación de la que se alimenta y evita a otras langostas. Sin embargo, bajo ciertas condiciones de humedad ambiental y como respuesta a un incremento en la presencia de otras langostas se dispara la transformación a la fase gregaria. Durante esta fase las langostas cambian de color, son más pequeñas, tienen hábitos diurnos (es decir, son activas durante el día), se les quita lo quisquillosas con las plantas de las que se alimentan y son altamente móviles.

Langostas en fase solitaria (arriba) y fase gregaria (abajo). Fotografía de Compton Tucker de la NASA tomada de Wikimedia Commons.

Los enormes enjambres de langostas parecen ser desafiantes no solo para agricultores, flora y fauna de un sitio en particular. Ser langosta dentro de un enjambre de langostas tiene también sus bemoles.


Mientras un voraz enjambre avanza a toda velocidad, las langostas que lo componen se enfrentan a una feroz competencia alimenticia. De hecho, si no se ponen listas pueden convertirse en el alimento de otras langostas. Al parecer entonces, las demandas de su fase gregaria se incrementan tanto en términos sociales como en términos alimenticios, considerando la intensa competencia a la que se enfrentan.


Las exigencias de la vida en grupo, por un lado, y las demandas de conseguir alimento suficiente, por el otro, han sido consideradas como factores determinantes –aunque no necesariamente independientes- en la evolución del tamaño del cerebro en vertebrados (ver por ejemplo, la hipótesis del cerebro social) y en invertebrados, como los insectos.


Se ha visto que tanto en vertebrados como en invertebrados, el tamaño del cerebro -así como el de las partes que lo forman- presenta cierta plasticidad fenotípica. Es decir, los estímulos ambientales a los que se enfrentan estos animales pueden influir en su tamaño y el de sus partes. La plasticidad fenotípica, sin embargo, se encuentra limitada por costos metabólicos y por otras razones relacionadas con la historia evolutiva de las especies en cuestión.


Pero el cerebro no es lo único que puede presentar plasticidad fenotípica, también la forma y el tamaño (morfología) de ciertas especies, su fisiología y conducta pueden verse modificadas bajo diferentes condiciones ambientales. Tal es el caso de las fases solitaria y gregaria de las langostas del desierto.


Dada la extrema plasticidad fenotípica que muestran las langostas en su morfología dos de las preguntas que seguirían serían ¿Sus cerebros reflejan también ésta plasticidad? Y si es así, ¿estarán estas diferencias relacionadas con las exigencias particulares de sus fases?


Las respuestas a las preguntas anteriores son afirmativas y fue lo que encontraron Swidbert R. Ott y Stephen M. Rogers de la Universidad de Cambridge, Inglaterra, comparando el tamaño del cerebro –y el de las partes que lo componen- de langostas solitarias con el de sus contrapartes gregarias. Para ello utilizaron langostas de laboratorio, quienes habían sido mantenidas en condiciones de hacinamiento (langostas gregarias) o aislamiento (langostas solitarias) por varias generaciones.


Ott y Rogers encontraron que los cerebros de las langostas gregarias resultaron ser, en general, 30% más grandes que las de las langostas solitarias, lo cual es notorio considerando que las langostas gregarias son 21% más pequeñas.


Además, encontraron que varias regiones del cerebro de las langostas gregarias eran también más grandes. Por ejemplo, aquellas regiones relacionadas con la integración de la información visual. También, se encontró un mayor tamaño en una región llamada “complejo central”, relacionada con el control motor y que podría estar relacionada con la navegación de las langostas al moverse de un sitio a otro.


Fueron más grandes aquellas áreas asociadas con la experiencia en el forrajeo, como algunas subregiones del cerebro medio, aunque también se ha encontrado que en avispas sociales dicha región se relaciona no con el forrajeo, sino con la dominancia social.


Otras subregiones del cerebro medio –también de mayor tamaño en langostas gregarias- están relacionadas con la discriminación olfativa y/o un mejor aprendizaje por asociación. Esto último podría conferir ventajas a las langostas gregarias cuando se enfrentan a una mayor variedad de plantas, lo cual es común dado que constantemente se mueven a zonas donde no necesariamente encuentran las plantas de las que habitualmente se alimentan y, por lo tanto, se enfrentan a la necesidad de balancear la ingesta de nutrientes.


Por otro lado, en el cerebro de las langostas solitarias se privilegian aquellas regiones relacionadas con la percepción visual y olfativa, lo que sugiere que en esta fase la visión y la percepción de la distancia son más importantes. En las langostas gregarias su ambiente se encuentra en cierto sentido “disminuido” por la presencia de muchas otras langostas, por lo que es lógico entonces que en dichas langostas sea el centro de integración visual el que se vea privilegiado.


Sin embargo, Ott y Rogers, sugieren cautela señalando que no es claro si el incremento en el tamaño de los llamados centros elevados del cerebro (higher brain centres) -relacionados con la integración de información- implica necesariamente una función adaptativa o si son consecuencia de las limitantes de conectividad y/o desarrollo originadas por el incremento en el tamaño del cerebro. Una de las consecuencias del incremento de tamaño en dichos centros podría ser la presencia de conductas diferentes en la fase gregaria; por lo que la identificación de dichas conductas es sin duda una de las sugerencias, para futuros estudios, que se derivan del de Ott y Rogers.


Con el estudio de Ott y Rogers es ahora evidente que el cambio de fase de las langostas no lo solo afecta el tamaño del cuerpo, la forma, la coloración, la endocrinología, el metabolismo y la conducta de las langostas, sino también el tamaño de su cerebro y las regiones que lo conforman. Los autores hacen notar que se han encontrado cambios similares en otros insectos y en vertebrados, lo que sugiere que varios animales comparten los mismos o muy semejantes mecanismos de plasticidad.


Artículo de referencia:
 
Ott, S., & Rogers, S. (2010). Gregarious desert locusts have substantially larger brains with altered proportions compared with the solitarious phase Proceedings of the Royal Society B: Biological Sciences DOI: 10.1098/rspb.2010.0694
ResearchBlogging.org